Copied to
clipboard

G = C3xC22:Q8order 96 = 25·3

Direct product of C3 and C22:Q8

direct product, metabelian, nilpotent (class 2), monomial, 2-elementary

Aliases: C3xC22:Q8, C12.62D4, C4:C4:3C6, (C2xC6):2Q8, (C6xQ8):8C2, (C2xQ8):3C6, C2.6(C6xD4), C2.3(C6xQ8), C4.13(C3xD4), C6.69(C2xD4), C6.20(C2xQ8), C22:2(C3xQ8), C22:C4.1C6, (C22xC4).7C6, C6.42(C4oD4), (C2xC6).77C23, C23.12(C2xC6), (C22xC12).15C2, (C2xC12).124C22, (C22xC6).28C22, C22.12(C22xC6), (C3xC4:C4):12C2, (C2xC4).4(C2xC6), C2.5(C3xC4oD4), (C3xC22:C4).4C2, SmallGroup(96,169)

Series: Derived Chief Lower central Upper central

C1C22 — C3xC22:Q8
C1C2C22C2xC6C2xC12C6xQ8 — C3xC22:Q8
C1C22 — C3xC22:Q8
C1C2xC6 — C3xC22:Q8

Generators and relations for C3xC22:Q8
 G = < a,b,c,d,e | a3=b2=c2=d4=1, e2=d2, ab=ba, ac=ca, ad=da, ae=ea, ebe-1=bc=cb, bd=db, cd=dc, ce=ec, ede-1=d-1 >

Subgroups: 100 in 74 conjugacy classes, 48 normal (24 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, C22, C6, C6, C2xC4, C2xC4, C2xC4, Q8, C23, C12, C12, C2xC6, C2xC6, C2xC6, C22:C4, C4:C4, C4:C4, C22xC4, C2xQ8, C2xC12, C2xC12, C2xC12, C3xQ8, C22xC6, C22:Q8, C3xC22:C4, C3xC4:C4, C3xC4:C4, C22xC12, C6xQ8, C3xC22:Q8
Quotients: C1, C2, C3, C22, C6, D4, Q8, C23, C2xC6, C2xD4, C2xQ8, C4oD4, C3xD4, C3xQ8, C22xC6, C22:Q8, C6xD4, C6xQ8, C3xC4oD4, C3xC22:Q8

Smallest permutation representation of C3xC22:Q8
On 48 points
Generators in S48
(1 5 19)(2 6 20)(3 7 17)(4 8 18)(9 27 21)(10 28 22)(11 25 23)(12 26 24)(13 46 36)(14 47 33)(15 48 34)(16 45 35)(29 40 43)(30 37 44)(31 38 41)(32 39 42)
(13 37)(14 38)(15 39)(16 40)(29 35)(30 36)(31 33)(32 34)(41 47)(42 48)(43 45)(44 46)
(1 11)(2 12)(3 9)(4 10)(5 25)(6 26)(7 27)(8 28)(13 37)(14 38)(15 39)(16 40)(17 21)(18 22)(19 23)(20 24)(29 35)(30 36)(31 33)(32 34)(41 47)(42 48)(43 45)(44 46)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)
(1 31 3 29)(2 30 4 32)(5 38 7 40)(6 37 8 39)(9 35 11 33)(10 34 12 36)(13 28 15 26)(14 27 16 25)(17 43 19 41)(18 42 20 44)(21 45 23 47)(22 48 24 46)

G:=sub<Sym(48)| (1,5,19)(2,6,20)(3,7,17)(4,8,18)(9,27,21)(10,28,22)(11,25,23)(12,26,24)(13,46,36)(14,47,33)(15,48,34)(16,45,35)(29,40,43)(30,37,44)(31,38,41)(32,39,42), (13,37)(14,38)(15,39)(16,40)(29,35)(30,36)(31,33)(32,34)(41,47)(42,48)(43,45)(44,46), (1,11)(2,12)(3,9)(4,10)(5,25)(6,26)(7,27)(8,28)(13,37)(14,38)(15,39)(16,40)(17,21)(18,22)(19,23)(20,24)(29,35)(30,36)(31,33)(32,34)(41,47)(42,48)(43,45)(44,46), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48), (1,31,3,29)(2,30,4,32)(5,38,7,40)(6,37,8,39)(9,35,11,33)(10,34,12,36)(13,28,15,26)(14,27,16,25)(17,43,19,41)(18,42,20,44)(21,45,23,47)(22,48,24,46)>;

G:=Group( (1,5,19)(2,6,20)(3,7,17)(4,8,18)(9,27,21)(10,28,22)(11,25,23)(12,26,24)(13,46,36)(14,47,33)(15,48,34)(16,45,35)(29,40,43)(30,37,44)(31,38,41)(32,39,42), (13,37)(14,38)(15,39)(16,40)(29,35)(30,36)(31,33)(32,34)(41,47)(42,48)(43,45)(44,46), (1,11)(2,12)(3,9)(4,10)(5,25)(6,26)(7,27)(8,28)(13,37)(14,38)(15,39)(16,40)(17,21)(18,22)(19,23)(20,24)(29,35)(30,36)(31,33)(32,34)(41,47)(42,48)(43,45)(44,46), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48), (1,31,3,29)(2,30,4,32)(5,38,7,40)(6,37,8,39)(9,35,11,33)(10,34,12,36)(13,28,15,26)(14,27,16,25)(17,43,19,41)(18,42,20,44)(21,45,23,47)(22,48,24,46) );

G=PermutationGroup([[(1,5,19),(2,6,20),(3,7,17),(4,8,18),(9,27,21),(10,28,22),(11,25,23),(12,26,24),(13,46,36),(14,47,33),(15,48,34),(16,45,35),(29,40,43),(30,37,44),(31,38,41),(32,39,42)], [(13,37),(14,38),(15,39),(16,40),(29,35),(30,36),(31,33),(32,34),(41,47),(42,48),(43,45),(44,46)], [(1,11),(2,12),(3,9),(4,10),(5,25),(6,26),(7,27),(8,28),(13,37),(14,38),(15,39),(16,40),(17,21),(18,22),(19,23),(20,24),(29,35),(30,36),(31,33),(32,34),(41,47),(42,48),(43,45),(44,46)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48)], [(1,31,3,29),(2,30,4,32),(5,38,7,40),(6,37,8,39),(9,35,11,33),(10,34,12,36),(13,28,15,26),(14,27,16,25),(17,43,19,41),(18,42,20,44),(21,45,23,47),(22,48,24,46)]])

C3xC22:Q8 is a maximal subgroup of
(C6xQ8):C4  (C2xQ8).49D6  (C2xC6).Q16  (C2xQ8).51D6  D12.36D4  D12.37D4  C3:C8:24D4  C3:C8:6D4  Dic6.37D4  C3:C8.29D4  C3:C8.6D4  (Q8xDic3):C2  C6.752- 1+4  C4:C4.187D6  C6.152- 1+4  C4:C4:26D6  C6.162- 1+4  C6.172- 1+4  D12:21D4  D12:22D4  Dic6:21D4  Dic6:22D4  C6.512+ 1+4  C6.1182+ 1+4  C6.522+ 1+4  C6.532+ 1+4  C6.202- 1+4  C6.212- 1+4  C6.222- 1+4  C6.232- 1+4  C6.772- 1+4  C6.242- 1+4  C6.562+ 1+4  C6.782- 1+4  C6.252- 1+4  C6.592+ 1+4  C3xD4xQ8

42 conjugacy classes

class 1 2A2B2C2D2E3A3B4A4B4C4D4E4F4G4H6A···6F6G6H6I6J12A···12H12I···12P
order12222233444444446···6666612···1212···12
size11112211222244441···122222···24···4

42 irreducible representations

dim1111111111222222
type++++++-
imageC1C2C2C2C2C3C6C6C6C6D4Q8C4oD4C3xD4C3xQ8C3xC4oD4
kernelC3xC22:Q8C3xC22:C4C3xC4:C4C22xC12C6xQ8C22:Q8C22:C4C4:C4C22xC4C2xQ8C12C2xC6C6C4C22C2
# reps1231124622222444

Matrix representation of C3xC22:Q8 in GL4(F13) generated by

1000
0100
0030
0003
,
1000
0100
0010
00012
,
1000
0100
00120
00012
,
0100
12000
00120
00012
,
91000
10400
0001
0010
G:=sub<GL(4,GF(13))| [1,0,0,0,0,1,0,0,0,0,3,0,0,0,0,3],[1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,12],[1,0,0,0,0,1,0,0,0,0,12,0,0,0,0,12],[0,12,0,0,1,0,0,0,0,0,12,0,0,0,0,12],[9,10,0,0,10,4,0,0,0,0,0,1,0,0,1,0] >;

C3xC22:Q8 in GAP, Magma, Sage, TeX

C_3\times C_2^2\rtimes Q_8
% in TeX

G:=Group("C3xC2^2:Q8");
// GroupNames label

G:=SmallGroup(96,169);
// by ID

G=gap.SmallGroup(96,169);
# by ID

G:=PCGroup([6,-2,-2,-2,-3,-2,-2,144,313,151,938]);
// Polycyclic

G:=Group<a,b,c,d,e|a^3=b^2=c^2=d^4=1,e^2=d^2,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,e*b*e^-1=b*c=c*b,b*d=d*b,c*d=d*c,c*e=e*c,e*d*e^-1=d^-1>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<